Induced paternal effects mimic cytoplasmic incompatibility in Drosophila.

نویسندگان

  • Michael E Clark
  • Benjamin D Heath
  • Cort L Anderson
  • Timothy L Karr
چکیده

Wolbachia is an intracellular microbe found in a wide diversity of arthropod and filarial nematode hosts. In arthropods these common bacteria are reproductive parasites that manipulate central elements of their host's reproduction to increase their own maternal transmission in one of several ways. Cytoplasmic incompatibility (CI) is one such manipulation where sperm are somehow modified in infected males and this modification must be rescued by the presence of the same bacterial strain in the egg for normal development to proceed. The molecular mechanisms involved in the expression of CI are unknown. Here we show that Wolbachia infection results in increased mRNA and protein expression of the Drosophila simulans nonmuscle myosin II gene zipper. Induced overexpression of zipper in Wolbachia-free transgenic D. melanogaster males results in paternal-effect lethality that mimics the fertilization defects associated with CI. Likewise, overexpression of the tumor suppressor gene, lethal giant larvae [l(2)gl], results in egg lethality and a CI phenotype. Stoichiometric levels of zipper and l(2)gl are required for proper segregation of cellular determinants during neuroblast stem cell division. Taken together these results form the basis of a working hypothesis whereby Wolbachia induces paternal effects in sperm by manipulating the expression of key regulators of cytoskeletal activity during spermatogenesis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A genetic test of the role of the maternal pronucleus in Wolbachia-induced cytoplasmic incompatibility in Drosophila melanogaster.

Cytoplasmic incompatibility (CI) is a reproductive sterility found in arthropods that is caused by the endoparasitic bacteria Wolbachia. In CI, host progeny fail to develop during early embryogenesis if Wolbachia-infected males fertilize uninfected females. It is widely accepted that this lethality is caused by some unknown Wolbachia-induced modification of the paternal nuclear material in the ...

متن کامل

A genetic test of the mechanism of Wolbachia-induced cytoplasmic incompatibility in Drosophila.

Cytoplasmic bacteria of the genus Wolbachia are best known as the cause of cytoplasmic incompatibility (CI): many uninfected eggs fertilized by Wolbachia-modified sperm from infected males die as embryos. In contrast, eggs of infected females rescue modified sperm and develop normally. Although Wolbachia cause CI in at least five insect orders, the mechanism of CI remains poorly understood. Her...

متن کامل

Does pupal communication influence Wolbachia-mediated cytoplasmic incompatibility?

Wolbachia are widespread endosymbiotic bacteria found in terrestrial arthropods and filarial nematodes [1]. In insects, Wolbachia generally rely on diverse strategies to manipulate their host's reproduction and favor their own vertical transmission through infected eggs [2]. One such mechanism is a sterility syndrome called 'cytoplasmic incompatibility'. Cytoplasmic incompatibility occurs at fe...

متن کامل

The relative importance of DNA methylation and Dnmt2-mediated epigenetic regulation on Wolbachia densities and cytoplasmic incompatibility

Wolbachia pipientis is a worldwide bacterial parasite of arthropods that infects germline cells and manipulates host reproduction to increase the ratio of infected females, the transmitting sex of the bacteria. The most common reproductive manipulation, cytoplasmic incompatibility (CI), is expressed as embryonic death in crosses between infected males and uninfected females. Specifically, Wolba...

متن کامل

Dynamics of cytoplasmic incompatibility and mtDNA variation in natural Drosophila simulans populations.

In Drosophila simulans a cytoplasmically transmitted microorganism causes reduced egg hatch when infected males mate with uninfected females. The infection is rapidly spreading northward in California. Data on a specific mtDNA restriction site length polymorphism show that changes in the frequency of mtDNA variants are associated with this spread. All infected flies possess the same mtDNA allel...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Genetics

دوره 173 2  شماره 

صفحات  -

تاریخ انتشار 2006